CALCULUS II EXAM 1 (FALL 2017)

NAME _____

1. Evaluate each definite integral. $f^{\pi/3}$ (5

(a) (8 points)
$$\int_{\pi/4}^{\pi/3} \left(\frac{5}{x^2} + \sec^2 x\right) dx$$

(b) (8 points)
$$\int_{1}^{2} x\sqrt{x-1} \, dx$$

(c) (8 points)
$$\int_0^1 \frac{4x+2}{x^2+x+5} dx$$

(d) (8 points)
$$\int_0^{\pi/4} \sin^3 2x \cos 2x \, dx$$

- 2. (10 points) Sketch the curve $y = e^x 1$ and
 - (a) find the **signed** area between the curve and the interval [-1, 2] on the x-axis;
 - (b) find the **total** area between the curve and the interval [-1, 2] on the x-axis.

3. (7 points) Sketch the region whose area is represented by the definite integral

$$\int_{-2}^0 \sqrt{4-x^2} dx,$$

and evaluate the integral using an appropriate formula from **geometry**.

4. (8 points) Find the average value of the function $f(x) = \frac{1}{1+4x^2}$ over the interval $[0, \frac{1}{2}]$.

5. (3 points) If
$$\int_{-1}^{2} f(x)dx = 3$$
 and $\int_{2}^{5} f(x)dx = 7$, find $\int_{5}^{-1} f(x)dx$.

6. (12 points) Use $A = \lim_{n \to +\infty} \sum_{k=1}^{n} f(x_k^*) \Delta x$ with x_k^* as the *right* endpoint of each subinterval to find the area under the curve $f(x) = x^3$ over the interval [2,4]. (No credit will be given for using other methods.) Formula: $\sum_{k=1}^{n} k = \frac{n(n+1)}{2};$ $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6};$ $\sum_{k=1}^{n} k^3 = \left[\frac{n(n+1)}{2}\right]^2$ 7. (8 points) Let $F(x) = \int_{3}^{x} \sqrt{t^2 + 1} dt$. Find (a) F(3) (b) F'(2) (c) F''(1)

8. (8 points) Let $f(x) = \sqrt{x}$. Find all values of x^* in the interval [0, 4] that satisfy the formula in the Mean Value Theorem for integrals.

9. (12 points) Sketch the region enclosed by the curves and find the area.

$$y^2 = x + 1, \quad y = x - 5.$$